

US007806651B2

(12) United States Patent

Kennepohl et al.

(10) Patent No.: US 7,806,651 B2 (45) Date of Patent: Oct. 5, 2010

(54) METHOD FOR DESIGNING A LOW-PRESSURE TURBINE OF AN AIRCRAFT ENGINE, AND LOW-PRESSURE TURBINE

(75) Inventors: Fritz Kennepohl, Unterschleissheim

(DE); Detlef Korte, Munich (DE)

(73) Assignee: MTU Aero Engines GmbH, Munich

(DE)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 771 days.

(21) Appl. No.: 11/547,581
(22) PCT Filed: Mar. 11, 2005

(86) PCT No.: **PCT/DE2005/000435**

§ 371 (c)(1),

(2), (4) Date: **Jun. 25, 2007** (87) PCT Pub. No.: **WO2005/100750**

PCT Pub. Date: Oct. 27, 2005

(65) Prior Publication Data

US 2008/0022691 A1 Jan. 31, 2008

(30) Foreign Application Priority Data

Apr. 2, 2004 (DE) 10 2004 016 246

(51) Int. Cl.

F01D 25/00 (2006.01)

(52) **U.S. Cl.** 415/119; 415/199.5

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

3,194,487	A	7/1965	Tyler	230/122
3,270,953	A	9/1966	Jerie et al	230/120
5,169,288	A	12/1992	Gliebe et al	415/119
5,478,199	A *	12/1995	Gliebe	415/119
6,409,469	B1*	6/2002	Tse	415/119
6,439,840	B1 *	8/2002	Tse	415/119

FOREIGN PATENT DOCUMENTS

DE	14 76 877	2/1970
DE	42 28 918	3/1993
GB	1072145	6/1967

^{*} cited by examiner

Primary Examiner—Ninh H Nguyen

(74) Attorney, Agent, or Firm—Davidson, Davidson & Kappel, LLC

(57) ABSTRACT

A low-pressure turbine of a gas turbine is disclosed. The turbine comprises a number of stages arranged one behind the other in an axial manner in the flow-through direction of the turbine. Each stage is formed from a fixed vane ring having a number of vanes and from a rotating blade ring having a number of blades. Each stage is characterized by a characteristic value vane-to-blade ratio that indicates the ratio of the number of vanes to the number of blades within a stage. One of the stages of the turbine is designed in such a manner that, in the event of noise-critical conditions of the turbine, the characteristic value vane-to-blade ratio of this stage is between a lower cut-off limit for mode k=-1 of the bladepassing frequency (BPF) of said stage and an upper cut-off limit for the mode k=-2 of the blade-passing frequency (BPF) of this stage.

13 Claims, 2 Drawing Sheets

